Подготовка воды для заводнения нефтяных пластов

Дата публикации: 04.05.2016

Скачать статью в формате PDF

Неотъемлемой частью большинства технологических процессов является очистка значительных объемов жидкости от механических загрязнений.

Знание физических основ процесса фильтрации, факторов, определяющих режимы работы фильтрационного оборудования и, в конечном счёте, качество производимого продукта, позволяет использовать наиболее рациональные типы современного фильтро-сепарационного оборудования.

Обслуживание фильтро-сепарационного оборудования требует достаточной теоретической подготовки, знания конструкций применяемого оборудования, умения обеспечить наиболее рациональные режимы работы при изменении физических характеристик поступающих суспензий.

Разработка современных высокоэффективных устройств очистки жидкостных и газовых потоков требует предварительного изучения дисперсной структуры загрязнений .

Главным фактором выбора эффективных устройств очистки жидкостей (газов), имеющих минимальную стоимость, является технологический аудит производственных условий эксплуатации, создаваемого фильтро-сепарационного оборудования.

К сожалению, в настоящее время такой аудит не проводится, потребители приобретают оборудование только на основе каталожной информации без учета реальных условий производств и, зачастую, несут повышенные затраты.

С точки зрения современных научных представлений высоко-эффективные технические устройства для очистки жидкостей (газов) должны быть сконструированы в виде многоступенчатой системы средств очистки, в которой каждая ступень работает в своей рекомендуемой зоне дисперсного состава загрязнений.

Высокоэффективная очистка воды для заводнения нефтяных пластов от загрязнений является весьма сложной технической задачей, решение которой на этапе проектирования ввода новых объектов требует проведения специальных научно-исследовательских и опытно-конструкторских работ. Основным нормативным документом, регламентирующим требования к качеству подготовки воды для заводнения нефтяных пластов, является ОСТ 39-225-88 «Вода для заводнения нефтяных пластов» (Приложение 1,2,3 )

Особенностями фильтрования пластовых вод после их предварительного отстаивания в резервуарах (РВС) является наличие в загрязненной воде: нефтепродуктов (неньютоновской жидкостей), АСПО, растворенных полимеров, поверхностно активных веществ и ряда других примесей, приводящих к облитерационным процессам фильтрующей перегородки.

Регенерация ФЭ обратным током фильтрата в этом случае оказывается недостаточно эффективной.

Вода поступающая из РВС представляет собой суспензию (КДС) содержащую мелкие в основном (5÷10 мкм) и зачастую липкие взвеси, что приводит к быстрому забиванию фильтровальной перегородки, а ее регенерация сложна, как правило, требуется замена фильтровальной перегородки или фильтрующего материала. В этих случаях задача фильтрования жидких сред традиционными фильтрами представляет наибольшую сложность или является экономически нерентабельной.

НПП «ЭкоЭнергоМаш» в течение 2007÷2012 г.г. совместно с ОАО «ТАТНИПИнефть» был выполнен большой объем НИР и ОКР по разработке различного фильтро-сепарационного оборудования и выбора оптимальных схем фильтрации с целью подготовки воды для заводнения нефтяных пластов.

В зависимости от качества очищаемой воды, требуемой степени её осветления и производительности установок применяют фильтры с различными устройствами пористой фильтрующей среды:

  • Фильтры с зернистой загрузкой;
  • Сетчатые фильтры;
  • Намывные фильтры;
  • Фильтры, в которых в качестве фильтрующей среды используются эластичные или жёсткие объёмные пористые материалы.

Обычная фильтрация позволяет отделить от жидкости (газа) частицы с размером более 10 мкм.

Для отделения от жидкости (газа) частиц с размером 0,1 - 10 мкм используется микрофильтрация. Главными областями применения микрофильтрации являются получение стерильной воды в пищевой и фармацевтической промышленности.

ОСТ 39-225-88 «Вода для заводнения нефтяных пластов», регламентирует очистку воды от механических примесей размером 1÷2 мкм.

В то же время при проектировании фильтрационного оборудованиядля подготовки воды с целью заводнения нефтяных пластов, информация о дисперсном составе механических примесей в интервале ≤ 2 мкм не приводится, наименьший интервал ≤ 5 мкм (0-5мкм), см. таблицу 1

Таблица 1

Объемная доля частиц, %
от 5,0 до 10,0 мкм от 10,0 до 25,0 мкм от 25,0 до 50,0 мкм от 50,0 до 100,0 мкм более 100 мкм

Такой характер анализа дисперсионного состава механических примесей в воде закачиваемой в нефтяные пласты присущ для всей нефтедобывающей отрасли России, что в общем подтверждает банальный факт экономической нерентабельности очистки воды от механических примесей менее 5 мкм и фактического отсутствия примеров выполнения требований очистки воды от механических частиц ≤ 2 мкм в соответствие с ОСТ 39-225-88.

В соответствие с требованием ОСТ 39-225-88 рассмотрим преимущества и недостатки различных систем фильтрационной подготовки воды для заводнения нефтяных пластов.

Приходится констатировать, что единственным методом, подготовки воды для заводнения нефтяных пластов, применяющимся повсеместно, остается метод отстаивания (отстойники). Для этого используются различные отстойники с комбинацией всевозможных внутренних устройств, для интенсификации осаждения различных примесей, - твердых, жидких.

Опыт применения фильтров, с зернистой загрузкой широко применяющихся для очистки сточных вод в процессах подготовки воды для закачки в нефтяные пласты крайне незначителен из-за их специфических особенностей.

В тех случаях, когда необходимость очистки обусловлена удалением из жидкости частиц размер которых, больше некоторого значения, применяют различное фильтрационное оборудование .

Работоспособность фильтрующего оборудования во многом определяется фильтрующими перегородками, с помощью которых осуществляется отделение частиц твердой фазы от жидкости или газа. Фильтрующие перегородки, как правило, выполняются из пористых материалов в виде плоских или цилиндрических поверхностей, называемых фильтрующими элементами.

Фильтрующие элементы (ФЭ) обычно изготавливаются из ткани, керамики, металлокерамики, различного вида сеток, набора пластин, из волокнистых материалов и др., образующих фильтрующие проходные сечения заданной величины.

Общим во всех перечисленных фильтрующих элементах является неизменность фильтрующих зазоров в обоих режимах работы фильтра: и при фильтровании, и при регенерации обратным током жидкости или газа.

Наибольшее распространение для заводнения нефтяных пластов получили фильтры с ФЭ на основе металлических сеток и пористо-ячеистых материалов (металлокерамические, керамические, полимерные).

Как показали многочисленные исследования в.т.ч. и НПП «ЭкоЭнергоМаш» фильтроэлементы изготовленные из пористо-ячеистых материалов (изготавливаются методом спекания из различных порошков) имеют большое количество тупиковых пор, что приводит к необратимой кольматации порового пространства. Применение обратной промывки не позволяет восстанавливать фильтрующую способность ФЭ даже при достижении предельных (давление разрушения) давлений.

В трактах высокого давления: компримирование газов, насосы высокого давления применение металлокерамических ФЭ может привести к аварийной ситуации т.к. предельные давления разрушения не превышают 1 МПа (10кг/см 2), к тому же при высоких скоростях фильтруемой среды происходит вынос субмикронных частиц из материала ФЭ, что резко снижает срок работы уплотнений.

Лучшие результаты в фильтрах для заводнения нефтяных пластов дает применение пружинных (спиральных) фильтроэлементов (ФЭК) и ФЭ на основе металлических сеток.

Фильтры на основе пружинных (Приложение 4) и сетчатых ФЭ обладают гарантированной крупностью очистки, низким гидравлическим сопротивлением, хорошей способностью к регенерации.

В пружинных ФЭ (фильтрующие элементы Крапухина) обеспечено различие свойств элементов: при фильтровании фильтрующие проходные сечения имеют заданную (при их изготовлении) неизменную величину, а при регенерации ФЭ обратным током жидкости или газа эти проходные сечения увеличиваются и, кроме того, имеют возможность совершать колебательные движения под воздействием регенерирующего потока жидкости или газа.

Основное отличие пружинных фильтроэлементов (ФЭК) от известных фильтрующих материалов и элементов состоит в том, что они свободны от главного их недостатка от необратимого закупоривания пор .

На фильтрах, оснащенных ФЭК, можно проводить бесконечное число циклов «фильтрация-регенерация», не опасаясь их остановки из-за необратимого закупоривания пор и необходимости замены фильтрующих материалов.

Выпускаемые сегодня ФЭК имеют абсолютную минимальную тонкость фильтрации 15÷18 мкм, и обеспечивают эффективную тонкость фильтрации в соответствие с ГОСТ 14066-68, на уровне 7÷10 мкм. Допустимый перепад давления на ФЭК не более 2 кг/см 2.

Фильтроэлементы ФЭК были разработаны для фильтрации радиоактивных растворов и наибольшее применение нашли в атомной промышленности.

НПП «ЭкоЭнергоМаш» разрабатывает и изготавливает различное фильтрационное оборудование для очистки жидкостей и газов на основе пружинных ФЭ.

Для очистки жидкостей с тонкостью фильтрации менее 10 мкм предприятием изготавливаются фильтры на основе проницаемых конструкций из металлических сеток, см. Приложение 5.

В отличие от фильтрующих материалов из металлических сеток, функциональныйсрок работы ФЭ из КПСМ (срок работы фильтроэлементов, при котором сохраняется паспортная тонкость фильтрации, производители никогда не указывают этот параметр!!!) сохраняется на все время эксплуатации ФЭ .

Функциональный срок работы ФЭ из металлических сеток как правило не превышает 20÷30 циклов регенерации и после предельного количества регенераций тонкость фильтрации не соответствует паспортным данным и может на порядки отличаться от первоначальной (паспортной).

Недостаток порошковых ФЭ (металлических, металлокерамических, керамических, полимерных материалов), необратимое закупоривание и как следствие падение производительности и невозможность регенерации.

Сетчатые ФЭ, обладая гарантированной степенью очистки, имеют малую грязеемкость. Для устранения этого недостатка используется механизм саморегенерации фильтра.

Различают фильтры, регенерация которых ведется постоянно (гидродинамические фильтры) и фильтры, в которых устройство очистки включается по мере необходимости (фильтры с противоточной регенерацией ФПР).

Преимущество последних проявляется при очистке слабозагрязненных сред, когда период фильтрования существенно превышает период регенерации.

Как указывалось выше вода поступающая на фильтрацию после отстойников представляет собой суспензию содержащую мелкие в основном (5÷10 мкм) липкие взвеси.

Регенерация ФЭ обратным током фильтрата в этом случае оказывается недостаточно эффективной. Визуальные наблюдения на испытательных стендах свидетельствуют, что поверхность ФЭ в момент наложения «шоковой» регенерации покрывается «вулканическими кратерами», но налипший осадок не отстает полностью от пористой перегородки, что приводит к постепенному падению производительности фильтра.

При продолжительной эксплуатации сетка зарастает частицами размер которых сопоставим с размером ячейки сетки (рис. 5)

На рис 5. приводится пример роста количества не удаляемых загрязнений при увеличении числа циклов загрязнение–регенерация для ФЭ изготовленных из металлических сеток.

На рис 6 приводится график граничного перепада давления Δр max на ФЭ при котором начинается необратимая кольматация (закупорка) от рабочего давления фильтра.

10 циклов 100 циклов Рис 6 Граничный перепад давления при загрязнении Δр max, в зависимости от рабочего давления фильтра
Рисунок 5 – Рост количества не удаляемых загрязнений при увеличении числа циклов загрязнение–регенерация

Поэтому, ограничение максимального перепада давления при засорении ФЭ дает реальную возможность обойтись без устройств интенсифицирующих процесс противоточной регенерации. Превышение рабочего давления фильтра над максимальным перепадом давления на ФЭ при засорении должно быть более чем на один порядок и на практике, как правило, подбирается экспериментально.

При эксплуатации фильтров крайне важно производить своевременную регенерацию ФЭ не допуская граничных перепадов давления Δр max !.

Для пористо-ячеистых материалов, это приводит к необратимой кольматации и фактически к необходимости замены ФЭ (как вариант восстановление на специальных ультразвуковых установках, что крайне проблематично по имеющемуся опыту эксплуатации фильтрационного оборудования на промышленных предприятиях).

Для сетчатых материалов такое требование также важно т.к. при достижении граничного Δр maxпроисходитдеформация ячеек на фильтре, полотно сетки начинает деформироваться, ячейки теряют свою форму, что приводит к местному увеличению размеров проходных отверстий металлической сетки и после предельного количества регенераций тонкость фильтрации не соответствует паспортным данным и может на порядки отличаться от первоначальной (паспортной).

Причина такого состояния в недостаточной эффективности противоточной промывки при удалении частиц загрязнителя, которые застряли в моменты близкие к началу цикла регенерации, в эти моменты площадь сетки остающейся чистой минимальна, а так как расход поддерживается постоянным, то скорости жидкости и частиц максимальны.

Многочисленные исследования показали, что именно переход кинетической энергии в упругие деформации частицы и проволок сетки обусловливает появление трудно удаляемых загрязнений.

Для устранения эффекта увеличения размеров проходных сечений применяют спекание узлов сетки после переплетения. Применение синтерированных сеток (сетки со спеченными узлами) исключают деформацию проходных отверстий, однако значительно усложняет технологию изготовления сеток, см. Приложение 5.

Одним из способов повышения пропускной способности фильтровальной перегородки и ресурса фильтроэлементов, является применение самоочищающихся фильтров, т. е. фильтров, которые в процессе работы очищались бы от образующегося на поверхности фильтровальной перегородки слоя осадка загрязнения и тем самым восстанавливали свою пропускную способность.

Известно, что очистка фильтровальной перегородки в процессе работы фильтра может осуществляться за счет гидродинамического смыва образующегося осадка потоком жидкости, а также за счет воздействия центробежных и вибрационных сил, акустических колебаний.

Непрерывная регенерация осуществляется в аппаратах 2-х типов:

  1. Гидродинамических фильтрах;
  2. Пульсационных аппаратах;

Первые нашли широкое применение при очистке сточных вод. Механизм работы гидродинамических фильтров заключается в том, что часть потока непрерывно омывает фильтрующую перегородку, или через всасывающие сопла непрерывно отбирается и сливается в дренаж.

Зарубежными и отечественными производителями гидродинамических фильтров предлагается множество конструктивных решений повышающих эксплуатационные качество таких фильтров. В качестве фильтрующей перегородки для гидродинамических фильтров используется щелевая решетка (значительно реже, металлические сетки и зернистые загрузки) с специальным профилем и полировкой фильтрующей поверхности. Минимальная тонкость фильтрации 50÷100мкм, применение сеток с меньшей тонкостью фильтрации в качестве фильтрующей перегородки в таких фильтрах приводит к значительному усложнению аппаратов и сложностью их эксплуатации.

В МГТУ им. Н. Э. Баумана разработаны гидродинамические вибрационные фильтры, которые обеспечивают необходимую тонкость фильтрации, позволяют достичь высокой эффективности очистки жидкостей при обеспечении больших пропускной способности и ресурса работы фильтра.

Гидродинамические вибрационные фильтры (ГВФ) могут применяться для очистки сильно загрязненных сточных вод, регенерации отработанных масел, для очистки технологических и рабочих сред, особенно эффективны для очистки высоковязких сред, а также сред, загрязненных нефтепродуктами, растворами полимеров.

В настоящее время происходят испытания фильтров ГВФ на машиностроительных предприятиях России.

Научными коллективами России возрождается направление создания фильтровального оборудования сильно загрязненных жидкостей, на основе пульсационных процессов в жидкостях, широко применявшихся на предприятиях Министерства Среднего машиностроения (сегодня министерство атомной промышленности)

Суть пульсационных процессов при фильтрации сильно загрязненных жидкостей через фильтрующую перегородку, заключается в создание пульсаций давления в жидкости различными пульсационными аппаратами (пульсаторами, акустическими излучателями).

Пульсации давления (акустические волны) воздействующие на суспензии (КДС), предотвращают прилипание (адгезии) примесей на фильтрующей перегородке, т.е. создается пульсирующий взвешенный слой примесей в жидкости, который по мере накопления дренируется.

В 2013г. НПП «ЭкоЭнергоМаш» планирует начать выпуск акустических фильтров для очистки газовых сред от аэрозольных примесей, и акустических фильтров на базе спиральных ФЭ и проницаемых конструкций (КПСМ) для фильтрации сильно загрязненных жидкостей (КДС) с акустическими излучателями.

Схема подготовки воды для заводнения нефтяных пластов состоит из 2-х последовательно включенных аппаратов:

  1. Фильтр с пружинными фильтроэлементами типа ФЭК, с абсолютной тонкостью фильтрации 15÷20 мкм и эффективной тонкостью фильтрации 7÷10мкм.
  2. Фильтр с ФЭ КПСМ с абсолютной тонкостью фильтрации 5 мкм, эффективной тонкостью фильтрации 1÷3мкм;
  3. Аппараты комплектуются УЗ генераторами;

Приложение 1

Обязательное

Допустимое содержание механических примесей и нефти в закачиваемой в продуктивный коллектор воде с целью поддержания пластового давления

Таблица 1

Проницаемость пористой среды коллектора, мкм 2 Коэффициент относительной трещиноватости коллектора Допустимое содержание в мг/л воде.
механических примесей нефти
до 0,1 вкл. - до 3 до 5
свыше 0,1 - до 5 до 10
до 0,35 вкл от 6,5 до 2 вкл до 15 до 15
свыше 0,35 менее 2 до 30 до30
до 0,6 вкл от 3,5 до 3,6 вкл до 40 до 40
свыше 0,6 менее 3,6 до 50 до 50

Примечание.

Коэффициент относительной трещинноватости определять в соответствии с РДС 39-01-041-81 "Методика прогнозного определения норм качества сточных вод для внутриконтурного заводнения новых нефтяных месторождений платформенного типа. Содержание механических примесей и нефти в сточной воде".

Приложение 2

Справочное

Технологические приемы обработки воды

Таблица 2

Показатели качества воды Технологические приемы обработки воды
Фильтрационная характеристика Отстаивание, коалесценция, флотация, фильтрование через различные материалы, гидравлическая сортировка, коагулирование с последующим фильтрованием, применение ингибиторов солеотложения и коррозии
Стабильность Ингибирование отложения солей
Совместимость Ингибирование отложения карбонатов и сульфатов
Размер частиц механических примесей и эмульгированной нефти Отстаивание, коалесценция на твердых и жидких средах, фильтрование через различные зернистые материалы, гидравлическая сортировка, флотация, коагулирование с последующим фильтрованием, диспергирование
Содержание эмульгированной нефти и механических примесей Отстаивание, коалесценция на твердых и жидких средах, фильтрация через различные зернистые материалы, отделение в гидроциклонах и мультигидроциклонах, флотация, коагулирование с последующей фильтрацией
Содержание растворенного кислорода Десорбция нефтяным газом, "холодная" вакуумная деаэрация, связывание реагентами-восстановителями
Коррозионная активность Применение ингибиторов коррозии
Содержание сероводорода, углеводородных газов Деаэрирование, связывание химическими реагентами, ингибирование
Наличие сульфатвосстанавливающих бактерий Обработка бактерицидами, бактерицидными лучами, хлором
Содержание иона железа Обработка и закачка воды по закрытой (без доступа воздуха) схеме, окисление, подщелачивание или смешение железо- и сероводородосодержащих промысловых сточных вод с последующим отстаиванием и фильтрованием.

Приложение 3

Справочное

Перечень нормативно-технических документов на методы определения показателей качества воды для заводнения нефтяных пластов

ОСТ 39-227-89 Вода для заводнения нефтяных пластов. Определение фильтрационной характеристики и водовосприимчивости низкопроницаемых пород-коллекторов в пластовых условиях.
ОСТ 39-228-89 Вода для заводнения нефтяных пластов. Оценка совместимости закачиваемой воды с пластовой водой и породой продуктивного пласта.
ОСТ 39-229-89 Вода для заводнения нефтяных пластов. Определение совместимости закачиваемых и пластовых вод по кальциту и гипсу расчетным методом.
ОСТ 39-230-89 Вода для заводнения нефтяных пластов. Определение размера частиц механических примесей.
ОСТ 39-231-89 Вода для заводнения нефтяных пластов. Определение содержания механических примесей в речных и промысловых водах.
ОСТ 39-232-89 Вода для заводнения нефтяных пластов. Определение размера частиц эмульгированной нефти.
ОСТ 39-133-81 Вода для заводнения нефтяных пластов. Определение содержания нефти в промысловой сточной воде.
ОСТ 39-233-89 Вода для заводнения нефтяных пластов. Определение содержания растворенного кислорода в нефтепромысловых сточных водах.
ГОСТ 9.506-87 Единая система защиты от коррозии и старения. Ингибиторы коррозии металлов в водно-нефтяных средах. Методы определения защитной способности.
ОСТ 39-234-89 Вода для заводнения нефтяных пластов. Определение содержания сероводорода.
ОСТ 39-191-85 Вода для заводнения нефтяных пластов. Определение содержания железа в промысловой сточной воде.